
3
Digital Arithmetic

Having discussed different methods of numeric and alphanumeric data representation in the first two
chapters, the next obvious step is to study the rules of data manipulation. Two types of operation
that are performed on binary data include arithmetic and logic operations. Basic arithmetic operations
include addition, subtraction, multiplication and division. AND, OR and NOT are the basic logic
functions. While the rules of arithmetic operations are covered in the present chapter, those related to
logic operations will be discussed in the next chapter.

3.1 Basic Rules of Binary Addition and Subtraction
The basic principles of binary addition and subtraction are similar to what we all know so well in
the case of the decimal number system. In the case of addition, adding ‘0’ to a certain digit produces
the same digit as the sum, and, when we add ‘1’ to a certain digit or number in the decimal number
system, the result is the next higher digit or number, as the case may be. For example, 6 + 1 in decimal
equals ‘7’ because ‘7’ immediately follows ‘6’ in the decimal number system. Also, 7 + 1 in octal
equals ‘10’ as, in the octal number system, the next adjacent higher number after ‘7’ is ‘10’. Similarly,
9 + 1 in the hexadecimal number system is ‘A’. With this background, we can write the basic rules of
binary addition as follows:

1. 0 + 0 = 0.
2. 0 + 1 = 1.
3. 1 + 0 = 1.
4. 1 + 1 = 0 with a carry of ‘1’ to the next more significant bit.
5. 1 + 1 + 1 = 1 with a carry of ‘1’ to the next more significant bit.

Table 3.1 summarizes the sum and carry outputs of all possible three-bit combinations. We have
taken three-bit combinations as, in all practical situations involving the addition of two larger bit

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5



48 Digital Electronics

Table 3.1 Binary addition of three bits.

A B Carry- Sum Carry- A B Carry- Sum Carry-
in (Cin) out (Co) in (Cin) out (Co)

0 0 0 0 0 1 0 0 1 0
0 0 1 1 0 1 0 1 0 1
0 1 0 1 0 1 1 0 0 1
0 1 1 0 1 1 1 1 1 1

numbers, we need to add three bits at a time. Two of the three bits are the bits that are part of the two
binary numbers to be added, and the third bit is the carry-in from the next less significant bit column.

The basic principles of binary subtraction include the following:

1. 0 − 0 = 0.
2. 1 − 0 = 1.
3. 1 − 1 = 0.
4. 0 − 1 = 1 with a borrow of 1 from the next more significant bit.

The above-mentioned rules can also be explained by recalling rules for subtracting decimal numbers.
Subtracting ‘0’ from any digit or number leaves the digit or number unchanged. This explains
the first two rules. Subtracting ‘1’ from any digit or number in decimal produces the immediately
preceding digit or number as the answer. In general, the subtraction operation of larger-bit binary
numbers also involves three bits, including the two bits involved in the subtraction, called the minuend
(the upper bit) and the subtrahend (the lower bit), and the borrow-in. The subtraction operation
produces the difference output and borrow-out, if any. Table 3.2 summarizes the binary subtraction
operation. The entries in Table 3.2 can be explained by recalling the basic rules of binary subtraction
mentioned above, and that the subtraction operation involving three bits, that is, the minuend (A�,
the subtrahend (B� and the borrow-in (Bin�, produces a difference output equal to (A − B − Bin�.
It may be mentioned here that, in the case of subtraction of larger-bit binary numbers, the least
significant bit column always involves two bits to produce a difference output bit and the borrow-out

Table 3.2 Binary subtraction.

Inputs Outputs

Minuend Subtrahend Borrow-in Difference Borrow-out
(A) (B) (Bin) (D) (Bo)

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1



Digital Arithmetic 49

bit. The borrow-out bit produced here becomes the borrow-in bit for the next more significant bit
column, and the process continues until we reach the most significant bit column. The addition and
subtraction of larger-bit binary numbers is illustrated with the help of examples in sections 3.2 and 3.3
respectively.

3.2 Addition of Larger-Bit Binary Numbers
The addition of larger binary integers, fractions or mixed binary numbers is performed columnwise
in just the same way as in the case of decimal numbers. In the case of binary numbers, however, we
follow the basic rules of addition of two or three binary digits, as outlined earlier. The process of
adding two larger-bit binary numbers can be best illustrated with the help of an example.

Consider two generalized four-bit binary numbers (A3 A2 A1 A0� and (B3 B2 B1 B0�, with A0 and B0

representing the LSB and A3 and B3 representing the MSB of the two numbers. The addition of these
two numbers is performed as follows. We begin with the LSB position. We add the LSB bits and
record the sum S0 below these bits in the same column and take the carry C0, if any, to the next column
of bits. For instance, if A0 = 1 and B0 = 0, then S0 = 1 and C0 = 0. Next we add the bits A1 and B1

and the carry C0 from the previous addition. The process continues until we reach the MSB bits. The
four steps are shown ahead. C0, C1, C2 and C3 are carrys, if any, produced as a result of adding first,
second, third and fourth column bits respectively, starting from LSB and proceeding towards MSB. A
similar procedure is followed when the given numbers have both integer as well as fractional parts:

(C0� (C1� (C0�
1. A3 A2 A1 A0 2. A3 A2 A1 A0

B3 B2 B1 B0 B3 B2 B1 B0

S0 S1 S0

(C2� (C1� (C0� (C2� (C1� (C0�
3. A3 A2 A1 A0 4. A3 A2 A1 A0

B3 B2 B1 B0 B3 B2 B1 B0

S2 S1 S0 C3 S3 S2 S1 S0

3.2.1 Addition Using the 2’s Complement Method

The 2’s complement is the most commonly used code for processing positive and negative binary
numbers. It forms the basis of arithmetic circuits in modern computers. When the decimal numbers to
be added are expressed in 2’s complement form, the addition of these numbers, following the basic
laws of binary addition, gives correct results. Final carry obtained, if any, while adding MSBs should
be disregarded. To illustrate this, we will consider the following four different cases:

1. Both the numbers are positive.
2. Larger of the two numbers is positive.
3. The larger of the two numbers is negative.
4. Both the numbers are negative.



50 Digital Electronics

Case 1

• Consider the decimal numbers +37 and +18.
• The 2’s complement of +37 in eight-bit representation = 00100101.
• The 2’s complement of +18 in eight-bit representation = 00010010.
• The addition of the two numbers, that is, +37 and +18, is performed as follows

00100101
+ 00010010

00110111

• The decimal equivalent of (00110111)2 is (+55), which is the correct answer.

Case 2

• Consider the two decimal numbers +37 and -18.
• The 2’s complement representation of +37 in eight-bit representation = 00100101.
• The 2’s complement representation of −18 in eight-bit representation = 11101110.
• The addition of the two numbers, that is, +37 and −18, is performed as follows:

00100101
+ 11101110

00010011

• The final carry has been disregarded.
• The decimal equivalent of (00010011)2 is +19, which is the correct answer.

Case 3

• Consider the two decimal numbers +18 and −37.
• −37 in 2’s complement form in eight−bit representation = 11011011.
• +18 in 2’s complement form in eight−bit representation = 00010010.
• The addition of the two numbers, that is, −37 and +18, is performed as follows:

11011011
+ 00010010

11101101

• The decimal equivalent of (11101101)2, which is in 2’s complement form, is −19, which is the
correct answer. 2’s complement representation was discussed in detail in Chapter 1 on number
systems.

Case 4

• Consider the two decimal numbers −18 and −37.
• −18 in 2’s complement form is 11101110.
• −37 in 2’s complement form is 11011011.
• The addition of the two numbers, that is, −37 and −18, is performed as follows:



Digital Arithmetic 51

11011011
+ 11101110

11001001

• The final carry in the ninth bit position is disregarded.
• The decimal equivalent of (11001001)2, which is in 2’s complement form, is −55, which is the

correct answer.

It may also be mentioned here that, in general, 2’s complement notation can be used to perform
addition when the expected result of addition lies in the range from −2n−1 to +(2n−1 − 1), n being
the number of bits used to represent the numbers. As an example, eight-bit 2’s complement arithmetic
cannot be used to perform addition if the result of addition lies outside the range from −128 to +127.
Different steps to be followed to do addition in 2’s complement arithmetic are summarized as follows:

1. Represent the two numbers to be added in 2’s complement form.
2. Do the addition using basic rules of binary addition.
3. Disregard the final carry, if any.
4. The result of addition is in 2’s complement form.

Example 3.1

Perform the following addition operations:

1. (275.75)10+ (37.875)10�
2. (AF1.B3)16+ (FFF.E)16�

Solution
1. As a first step, the two given decimal numbers will be converted into their equivalent binary

numbers (decimal-to-binary conversion has been covered at length in Chapter 1, and therefore the
decimal-to-binary conversion details will not be given here):

(275.75)10 = (100010011.11)2 and (37.875)10 = (100101.111)2

The two binary numbers can be rewritten as (100010011.110)2 and (000100101.111)2 to have the
same number of bits in their integer and fractional parts. The addition of two numbers is performed
as follows:

100010011�110
000100101�111
100111001�101

The decimal equivalent of (100111001.101)2 is (313.625)10.



52 Digital Electronics

2. (AF1.B3)16 = (101011110001.10110011)2 and (FFF.E)16 = (111111111111.1110)2. (1111111111
11.1110)2 can also be written as (111111111111.11100000)2 to have the same number of bits in
the integer and fractional parts. The two numbers can now be added as follows:

0101011110001�10110011
0111111111111�11100000
1101011110001�10010011

The hexadecimal equivalent of (1101011110001.10010011)2 is (1AF1.93)16, which is equal to the
hex addition of (AF1.B3)16 and (FFF.E)16.

Example 3.2

Find out whether 16-bit 2’s complement arithmetic can be used to add 14 276 and 18 490.

Solution
The addition of decimal numbers 14 276 and 18 490 would yield 32 766. 16-bit 2’s complement
arithmetic has a range of −215 to +(215 − 1), i.e. −32 768 to +32 767. The expected result is inside
the allowable range. Therefore, 16-bit arithmetic can be used to add the given numbers.

Example 3.3

Add −118 and −32 firstly using eight-bit 2’s complement arithmetic and then using 16-bit 2’s
complement arithmetic. Comment on the results.

Solution
• −118 in eight-bit 2’s complement representation = 10001010.
• −32 in eight-bit 2’s complement representation = 11100000.
• The addition of the two numbers, after disregarding the final carry in the ninth bit position, is

01101010. Now, the decimal equivalent of (01101010)2, which is in 2’s complement form, is +106.
The reason for the wrong result is that the expected result, i.e. −150, lies outside the range of
eight-bit 2’s complement arithmetic. Eight-bit 2’s complement arithmetic can be used when the
expected result lies in the range from −27 to + (27 − 1), i.e. −128 to +127. −118 in 16-bit 2’s
complement representation = 1111111110001010.

• −32 in 16-bit 2’s complement representation = 1111111111100000.
• The addition of the two numbers, after disregarding the final carry in the 17th position, produces

1111111101101010. The decimal equivalent of (1111111101101010)2, which is in 2’s complement
form, is −150, which is the correct answer. 16-bit 2’s complement arithmetic has produced the
correct result, as the expected result lies within the range of 16-bit 2’s complement notation.

3.3 Subtraction of Larger-Bit Binary Numbers
Subtraction is also done columnwise in the same way as in the case of the decimal number system.
In the first step, we subtract the LSBs and subsequently proceed towards the MSB. Wherever the
subtrahend (the bit to be subtracted) is larger than the minuend, we borrow from the next adjacent



Digital Arithmetic 53

higher bit position having a ‘1’. As an example, let us go through different steps of subtracting (1001)2

from (1100)2.
In this case, ‘1’ is borrowed from the second MSB position, leaving a ‘0’ in that position. The

borrow is first brought to the third MSB position to make it ‘10’. Out of ‘10’ in this position,
‘1’ is taken to the LSB position to make ‘10’ there, leaving a ‘1’ in the third MSB position.
10 − 1 in the LSB column gives ‘1’, 1 − 0 in the third MSB column gives ‘1’, 0 − 0 in the second
MSB column gives ‘0’ and 1 − 1 in the MSB also gives ‘0’ to complete subtraction. Subtraction
of mixed numbers is also done in the same manner. The above-mentioned steps are summarized
as follows:

1. 1 1 0 0 2. 1 1 0 0
1 0 0 1 1 0 0 1

1 1 1

3. 1 1 0 0 4. 1 1 0 0
1 0 0 1 1 0 0 1

0 1 1 0 0 1 1

3.3.1 Subtraction Using 2’s Complement Arithmetic

Subtraction is similar to addition. Adding 2’s complement of the subtrahend to the minuend and
disregarding the carry, if any, achieves subtraction. The process is illustrated by considering six
different cases:

1. Both minuend and subtrahend are positive. The subtrahend is the smaller of the two.
2. Both minuend and subtrahend are positive. The subtrahend is the larger of the two.
3. The minuend is positive. The subtrahend is negative and smaller in magnitude.
4. The minuend is positive. The subtrahend is negative and greater in magnitude.
5. Both minuend and subtrahend are negative. The minuend is the smaller of the two.
6. Both minuend and subtrahend are negative. The minuend is the larger of the two.

Case 1

• Let us subtract +14 from +24.
• The 2’s complement representation of +24 = 00011000.
• The 2’s complement representation of +14 = 00001110.
• Now, the 2’s complement of the subtrahend (i.e. +14) is 11110010.
• Therefore, +24 − (+14) is given by

00011000
+ 11110010

00001010

with the final carry disregarded.
• The decimal equivalent of (00001010)2 is +10, which is the correct answer.



54 Digital Electronics

Case 2

• Let us subtract +24 from +14.
• The 2’s complement representation of +14 = 00001110.
• The 2’s complement representation of +24 = 00011000.
• The 2’s complement of the subtrahend (i.e. +24) = 11101000.
• Therefore, +14 − (+24) is given by

00001110
+ 11101000

11110110

• The decimal equivalent of (11110110)2, which is of course in 2’s complement form, is −10 which
is the correct answer.

Case 3

• Let us subtract −14 from +24.
• The 2’s complement representation of +24 = 00011000 = minuend.
• The 2’s complement representation of −14 = 11110010 = subtrahend.
• The 2’s complement of the subtrahend (i.e. −14) = 00001110.
• Therefore, +24 − (−14) is performed as follows:

00011000
+ 00001110

00100110

• The decimal equivalent of (00100110)2 is +38, which is the correct answer.

Case 4

• Let us subtract −24 from +14.
• The 2’s complement representation of +14 = 00001110 = minuend.
• The 2’s complement representation of −24 = 11101000 = subtrahend.
• The 2’s complement of the subtrahend (i.e. −24) = 00011000.
• Therefore, +14 − (−24) is performed as follows:

00001110
+ 00011000

00100110

• The decimal equivalent of (00100110)2 is +38, which is the correct answer.

Case 5

• Let us subtract −14 from −24.
• The 2’s complement representation of −24 = 11101000 = minuend.



Digital Arithmetic 55

• The 2’s complement representation of −14=11110010 = subtrahend.
• The 2’s complement of the subtrahend = 00001110.
• Therefore, −24 − (−14) is given as follows:

11101000
+ 00001110

11110110

• The decimal equivalent of (11110110)2, which is in 2’s complement form, is −10, which is the
correct answer.

Case 6

• Let us subtract −24 from −14.
• The 2’s complement representation of −14 = 11110010 = minuend.
• The 2’s complement representation of −24=11101000 = subtrahend.
• The 2’s complement of the subtrahend = 00011000.
• Therefore, −14 − (−24) is given as follows:

11110010
+ 00011000

00001010

with the final carry disregarded.
• The decimal equivalent of (00001010)2, which is in 2’s complement form, is +10, which is the

correct answer.

It may be mentioned that, in 2’s complement arithmetic, the answer is also in 2’s complement
notation, only with the MSB indicating the sign and the remaining bits indicating the magnitude. In
2’s complement notation, positive magnitudes are represented in the same way as the straight binary
numbers, while the negative magnitudes are represented as the 2’s complement of their straight binary
counterparts. A ‘0’ in the MSB position indicates a positive sign, while a ‘1’ in the MSB position
indicates a negative sign.

The different steps to be followed to do subtraction in 2’s complement arithmetic are summarized
as follows:

1. Represent the minuend and subtrahend in 2’s complement form.
2. Find the 2’s complement of the subtrahend.
3. Add the 2’s complement of the subtrahend to the minuend.
4. Disregard the final carry, if any.
5. The result is in 2’s complement form.
6. 2’s complement notation can be used to perform subtraction when the expected result of subtraction

lies in the range from −2n−1 to +(2n−1 − 1), n being the number of bits used to represent the
numbers.



56 Digital Electronics

Example 3.4

Subtract (1110.011)2 from (11011.11)2 using basic rules of binary subtraction and verify the result by
showing equivalent decimal subtraction.

Solution
The minuend and subtrahend are first modified to have the same number of bits in the integer and
fractional parts. The modified minuend and subtrahend are (11011.110)2 and (01110.011)2 respectively:

11011�110
− 01110�011

01101�011

The decimal equivalents of (11011.110)2 and (01110.011)2 are 27.75 and 14.375 respectively. Their
difference is 13.375, which is the decimal equivalent of (01101.011)2.

Example 3.5

Subtract (a) (−64)10 from (+32)10 and (b) (29.A)16 from (4F.B)16. Use 2’s complement arithmetic.

Solution:
(a) (+32)10in 2’s complement notation = (00100000)2.

(−64)10 in 2’s complement notation = (11000000)2.
The 2’s complement of (−64)10 = (01000000)2.
(+32)10 − (−64)10 is determined by adding the 2’s complement of (−64)10 to (+32)10.
Therefore, the addition of (00100000)2 to (01000000)2 should give the result. The operation is
shown as follows:

00100000
+ 01000000

01100000

The decimal equivalent of (01100000)2 is +96, which is the correct answer as +32 − (−64) = +96.
(b) The minuend = (4F.B)16 = (01001111.1011)2.

The minuend in 2’s complement notation = (01001111.1011)2.
The subtrahend = (29.A)16 = (00101001.1010)2.
The subtrahend in 2’s complement notation = (00101001.1010)2.
The 2’s complement of the subtrahend = (11010110.0110)2.
(4F.B)16 − (29.A)16 is given by the addition of the 2’s complement of the subtrahend to the
minuend.

01001111�1011
+ 11010110�0110

00100110�0001

with the final carry disregarded. The result is also in 2’s complement form. Since the result is a
positive number, 2’s complement notation is the same as it would be in the case of the straight
binary code.
The hex equivalent of the resulting binary number = (26.1)16, which is the correct answer.


